Rapid communication on the role of the GeneXpert® platform for rapid molecular testing for SARS-CoV-2 in the WHO European Region

European Laboratory Initiative on TB, HIV and Viral Hepatitis

1 April 2020
Abstract

In view of the current COVID-19 pandemic and consequent need for automated rapid diagnostic technologies with a rapid turnaround time, the European Laboratory Initiative on TB, HIV and Viral Hepatitis (ELI) has developed this rapid communication to inform Member States of the WHO European Region on the potential use of the Xpert® Xpress SARS-CoV-2 cartridge (Cepheid, Sunnyvale, United States of America). These cartridges, which received Emergency Use Authorization from the United States Food and Drug Administration on 20 March 2020, can be run on GeneXpert® platforms that are already available in the Region and currently used for diagnosis of tuberculosis and rifampicin resistance (as recommended by WHO), hepatitis C and seasonal influenza, and for HIV viral load testing and early infant diagnosis of HIV infection. Based on the best available evidence and current knowledge, this rapid communication by ELI provides a short overview of (i) the major points when considering the use of GeneXpert machines for COVID-19 testing and (ii) the support that ELI is working to provide to Member States of the Region.

Address requests about publications of the WHO Regional Office for Europe to:
Publications
WHO Regional Office for Europe
UN City, Marmorvej 51
DK-2100 Copenhagen Ø, Denmark
Alternatively, complete an online request form for documentation, health information, or for permission to quote or translate, on the Regional Office website (http://www.euro.who.int/pubrequest).

Rapid communication on the role of the GeneXpert® platform for rapid molecular testing for SARS-CoV-2 in the WHO European Region

© World Health Organization 2020

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”.

Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization.

Suggested citation. Rapid communication on the role of the GeneXpert® platform for rapid molecular testing for SARS-CoV-2 in the WHO European Region. Copenhagen: WHO Regional Office for Europe; 2020. Licence: CC BY-NC-SA 3.0 IGO.

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. To submit requests for commercial use and queries on rights and licensing, see http://www.who.int/about/licensing.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers' products does not imply that they are endorsed or recommended by WHO in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.

All reasonable precautions have been taken by WHO to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall WHO be liable for damages arising from its use.
Background

On 30 January 2020 WHO declared coronavirus disease 2019 (COVID-19) a public health emergency of international concern, and on 11 March declared it as a global pandemic. From the onset of this public health crisis, the need for rapid and accurate laboratory testing was highlighted, and laboratory scientists responded by developing the first diagnostic tests for COVID-19 within days of the release of the viral genome sequence.

The WHO European Region is currently the epicentre of the COVID-19 outbreak, with the disease reportedly most prevalent in the western part of the Region; however, this information needs to be carefully interpreted because countries are in different stages of disease transmission and the lower numbers reported in some eastern European countries may be due to the lack of available diagnostic services. All countries need to plan ahead to ensure sufficient diagnostic capacity, as outlined in the WHO guidance document, Laboratory testing strategy recommendations for COVID-19.¹

In this context, one of the key questions faced by countries is which diagnostic assay(s) to adopt to meet the demand for the four transmission scenarios identified by WHO (1,2). Serological or rapid antigen tests are currently not recommended by WHO for COVID-19 case detection: instead, nucleic acid amplification tests should be used. However, this guidance may change based on the availability of new serological tests (1). An overview of tests under development can be found on the FIND website (3). Some have already received Emergency Use Authorization by the United States Food and Drug Administration (FDA) and/or are CE-IVD marked² for diagnostic use in the European Union. WHO is continuously updating technical guidance for COVID-19, including recommendations on laboratory testing (2). No comprehensive comparison of the performance of rapid diagnostic has been performed to date, although several evaluations are ongoing or planned (5). For the time being, the following logistic and financial factors, among other factors, can be weighed to inform the choice of nucleic acid amplification test: turnaround time, throughput (i.e. number of tests that can be run simultaneously in one round), degree of automation, supply considerations and cost (list not exhaustive).

Key updates and considerations

COVID-19 testing with the Xpert® Xpress SARS-CoV-2 cartridge

In view of FDA Emergency Use Authorization of the Xpert® Xpress SARS-CoV-2 cartridge (Cepheid, Sunnyvale, United States of America) (6,7) on 20 March 2020, one option for COVID-19 testing may be to leverage the spare capacity of existing GeneXpert® machines. Possible advantages of this approach are that the assay is fully automated and provides results within

¹ For the latest update, please check the following version of the document, Laboratory testing strategy recommendations for COVID-19. Interim guidance: 22 March 2020 (1).

² CE marking is required for all in vitro diagnostic (IVD) devices sold in Europe. It indicates that an IVD device complies with the European In-Vitro Diagnostic Devices Directive (98/79/EC) and that the device may be legally commercialized in the European Union (4).
45 minutes. Laboratory staff may be already familiar with the GeneXpert® platform, given that the Xpert® MTB/RIF assay serves as the primary diagnostic assay for tuberculosis (TB) and its drug-resistant forms in eastern and central European countries in accordance with WHO recommendations (8). Therefore, the possibility of applying GeneXpert® platforms can be considered providing cartridge production capacity and cost are optimal. However, it is important to note that according to WHO guidelines and recommendations GeneXpert®-based COVID-19 testing should not be used outside of laboratories with adequate containment practices, which may diminish the value of the rapid turnaround time in the absence of efficient sample transport/logistics (9). Moreover, the WHO Emergency Use Listing procedure is ongoing (timeline for completion is not yet known) (10,11) and there is a possibility that the cartridge will not be endorsed or will be reserved only for narrow applications. Moreover, the throughput of Xpert® Xpress SARS-CoV-2 is limited (e.g. in a machine with four modules, only four tests can be done with a turnaround time of 45 minutes). Assuming one test is performed per module per hour and a 24-hour working pattern, the total theoretical capacity of 10 GeneXpert® machines with four modules would be approximately 960 samples per day. Crucially, however, the spare testing capacity is likely to be considerably lower.

Taken together, this means that although Xpert® Xpress SARS-CoV-2 is a potentially promising option for testing a limited number of samples (e.g. from patients in intensive care units or from health-care workers with the highest public health priority), it is probably not the optimal solution for the vast majority of samples, particularly in settings with large outbreaks. The Xpert® Xpress SARS-CoV-2 cartridge is probably best suited to complement a wider testing strategy that primarily relies on one or more higher throughput assays. Indeed, the latter strategy has been adopted by all countries that have or are currently experiencing large-scale disease transmission. In this context, it should be noted that no single high-throughput assay is considered optimal. Countries must assess the capacity of existing platforms, taking into account the aforementioned considerations for Xpert® Xpress SARS-CoV-2, to decide which assay(s) to select.

Testing for COVID-19 and TB

On 20 March 2020 the WHO Global TB Programme circulated an information note on TB and the COVID-19 response stating that, on a programmatic level, countries would need to develop targeted strategies for COVID-19 testing in TB patients, including those with previous disease (12). It also points out that testing for TB in individuals presenting for COVID-19 testing is becoming necessary, as is COVID-19 testing among individuals presenting to TB services with respiratory signs and symptoms.

Next steps

While awaiting additional regional and national approval for Xpert® Xpress SARS-CoV-2, as well as production of the first cartridges, core group members of the European Laboratory Initiative on TB, HIV and Viral Hepatitis (ELI) will focus on the following major areas to provide further
clarification and to support the WHO European Region with materials to be ready once this test becomes available in countries (in order of priority):

- identify and share the list of supplies that will be needed to run the test (e.g. viral transport tube, swabs);
- provide standard operating procedures in English and Russian;
- develop technical support materials to help countries rationalize their laboratory network and use the existing GeneXpert® machines for the maximal COVID-19 response without compromising their use for TB, HIV and viral hepatitis;
- provide remote or in-country support:
 - on necessary biosafety measures and considerations;
 - on workflow organization for GeneXpert® machines that will be used for several diseases (i.e. TB, HIV/viral hepatitis and COVID-19);
 - for sample transportation;
 - on data management tools (e.g. GxAlert) and laboratory record and report forms; and
 - for integration of rapid diagnostic tests into the overall diagnostic algorithms and testing strategies.

Acknowledgements

This rapid communication was developed as a collaborative product by ELI core group members. Document development was guided by Dr Masoud Dara (WHO Regional Office for Europe) and led by Dr Soudeh Ehsani (WHO Regional Office for Europe), ELI chair, Professor Francis Drobniewski (Imperial College London, United Kingdom), and ELI core group members (in alphabetical order), Dr Ana Avellon (National Center of Microbiology, Carlos III Health Institute, Spain), Ms Zamira Baydulloeva (Project HOPE USAID TB Control Program, Tajikistan), Dr Vladimir Chulanov (Reference Center for Viral Hepatitis, Central Research Institute of Epidemiology, Russian Federation), Dr Daniela M. Cirillo (WHO Collaborating Centre in Tuberculosis Laboratory Strengthening and TB Supranational Reference Laboratory, San Raffaele Scientific Institute, Italy), Dr Irina Felker (Novosibirsk Tuberculosis Research Institute–WHO Collaborative Centre, Russian Federation), Professor Sven Hoffner (Karolinska Institute, Sweden), Dr Gulmira I. Kalmambetova (National Reference Laboratory, Kyrgyzstan), Dr Dmitriy Kireev (Central Research Institute of Epidemiology, Russian Federation), Dr Claudio Köser (University of Cambridge, United Kingdom), Dr Florian Maurer (National and Supranational Reference Center for Mycobacteria, Research Center Borstel–Leibniz Lung Center, Germany), Professor Stefan Niemann (Research Center Borstel–Leibniz Lung Center, Germany), Ms Ecaterina Noroc (Dermatology and Communicable Diseases Hospital, Republic of Moldova), Dr Roger Paredes (Hospital Universitari Germans Trias i Pujol and Universitat Autònoma de Barcelona, Spain), Dr Rob Schuurman (University Medical Centre Utrecht, The Netherlands), Dr Elina V. Sevastyanova (Central Tuberculosis Research Institute Excellence as part of the WHO TB Supranational Reference Laboratory Network, Central TB Research Institute, Russian Federation), Dr Natalia Shubladze (National Centre of Tuberculosis and Lung Diseases and the National Reference Mycobacteriology Laboratory, Georgia), Mr Daniel Simoes (Institute of Public Health of the University of Porto, Portugal), Dr Alena Skrahina (Republican Research and Practical Centre for Pulmonology and Tuberculosis, Belarus) and Dr Maja Stanojevic (HIV/AIDS National Reference Laboratory, University of Belgrade Medical Faculty, Serbia). The document was reviewed at the WHO Regional Office for Europe by Dr Nedret Emiroglu, Dr Dorit Nitzan, Dr Caroline Brown, Dr Dmitriy Pereyaslov, Dr Christine Uhlenhaut and Dr Joanna Zwetyenga. Furthermore, Dr Karin Weyer and Dr Dennis Falzon from WHO headquarters reviewed the document and provided substantial input.
References

The WHO Regional Office for Europe

The World Health Organization (WHO) is a specialized agency of the United Nations created in 1948 with the primary responsibility for international health matters and public health. The WHO Regional Office for Europe is one of six regional offices throughout the world, each with its own programme geared to the particular health conditions of the countries it serves.

Member States

Albania
Andorra
Armenia
Austria
Azerbaijan
Belarus
Belgium
Bosnia and Herzegovina
Bulgaria
Croatia
Cyprus
Czechia
Denmark
Estonia
Finland
France
Georgia
Germany
Greece
Hungary
Iceland
Ireland
Israel
Italy
Kazakhstan
Kyrgyzstan
Latvia
Lithuania
Luxembourg
Malta
Monaco
Montenegro
Netherlands
North Macedonia
Norway
Poland
Portugal
Republic of Moldova
Romania
Russian Federation
San Marino
Serbia
Slovakia
Slovenia
Spain
Sweden
Switzerland
Tajikistan
Turkey
Turkmenistan
Ukraine
United Kingdom
Uzbekistan

World Health Organization
Regional Office for Europe

UN City, Marmorvej 51, DK-2100 Copenhagen Ø, Denmark
Tel.: +45 45 33 70 00 Fax: +45 45 33 70 01
Email: eurocontact@who.int
Website: www.euro.who.int